251 research outputs found

    Delay-Dependent Robust Exponential Stability and H

    Get PDF
    This paper deals with the problem of robust exponential stability and H∞ performance analysis for a class of uncertain Markovian jumping system with multiple delays. Based on the reciprocally convex approach, some novel delay-dependent stability criteria for the addressed system are derived. At last, numerical examples is given presented to show the effectiveness of the proposed results

    Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs

    Full text link
    We propose a novel multi-bit box-free watermarking method for the protection of Intellectual Property Rights (IPR) of GANs with improved robustness against white-box attacks like fine-tuning, pruning, quantization, and surrogate model attacks. The watermark is embedded by adding an extra watermarking loss term during GAN training, ensuring that the images generated by the GAN contain an invisible watermark that can be retrieved by a pre-trained watermark decoder. In order to improve the robustness against white-box model-level attacks, we make sure that the model converges to a wide flat minimum of the watermarking loss term, in such a way that any modification of the model parameters does not erase the watermark. To do so, we add random noise vectors to the parameters of the generator and require that the watermarking loss term is as invariant as possible with respect to the presence of noise. This procedure forces the generator to converge to a wide flat minimum of the watermarking loss. The proposed method is architectureand dataset-agnostic, thus being applicable to many different generation tasks and models, as well as to CNN-based image processing architectures. We present the results of extensive experiments showing that the presence of the watermark has a negligible impact on the quality of the generated images, and proving the superior robustness of the watermark against model modification and surrogate model attacks

    Supervised GAN Watermarking for Intellectual Property Protection

    Full text link
    We propose a watermarking method for protecting the Intellectual Property (IP) of Generative Adversarial Networks (GANs). The aim is to watermark the GAN model so that any image generated by the GAN contains an invisible watermark (signature), whose presence inside the image can be checked at a later stage for ownership verification. To achieve this goal, a pre-trained CNN watermarking decoding block is inserted at the output of the generator. The generator loss is then modified by including a watermark loss term, to ensure that the prescribed watermark can be extracted from the generated images. The watermark is embedded via fine-tuning, with reduced time complexity. Results show that our method can effectively embed an invisible watermark inside the generated images. Moreover, our method is a general one and can work with different GAN architectures, different tasks, and different resolutions of the output image. We also demonstrate the good robustness performance of the embedded watermark against several post-processing, among them, JPEG compression, noise addition, blurring, and color transformations

    General GAN-generated image detection by data augmentation in fingerprint domain

    Full text link
    In this work, we investigate improving the generalizability of GAN-generated image detectors by performing data augmentation in the fingerprint domain. Specifically, we first separate the fingerprints and contents of the GAN-generated images using an autoencoder based GAN fingerprint extractor, followed by random perturbations of the fingerprints. Then the original fingerprints are substituted with the perturbed fingerprints and added to the original contents, to produce images that are visually invariant but with distinct fingerprints. The perturbed images can successfully imitate images generated by different GANs to improve the generalization of the detectors, which is demonstrated by the spectra visualization. To our knowledge, we are the first to conduct data augmentation in the fingerprint domain. Our work explores a novel prospect that is distinct from previous works on spatial and frequency domain augmentation. Extensive cross-GAN experiments demonstrate the effectiveness of our method compared to the state-of-the-art methods in detecting fake images generated by unknown GANs

    Multiobjective nonfragile fuzzy control for nonlinear stochastic financial systems with mixed time delays

    Get PDF
    In this study, a multiobjective nonfragile control is proposed for a class of stochastic Takagi and Sugeno (T–S) fuzzy systems with mixed time delays to guarantee the optimal H2 and H∞ performance simultaneously. Firstly, based on the T–S fuzzy model, two form of nonfragile state feedback controllers are designed to stabilize the T–S fuzzy system, that is to say, nonfragile state feedback controllers minimize the H2 and H∞ performance simultaneously. Then, by applying T–S fuzzy approach, the multiobjective H2/H∞ nonfragile fuzzy control problem is transformed into linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we efficiently solve Pareto optimal solutions for the MOP by employing LMI-based multiobjective evolution algorithm (MOEA). Finally, the validity of this approach is illustrated by a realistic design example

    An Empirical Study of the Landscape of Open Source Projects in Baidu, Alibaba, and Tencent

    Full text link
    Open source software has drawn more and more attention from researchers, developers and companies nowadays. Meanwhile, many Chinese technology companies are embracing open source and choosing to open source their projects. Nevertheless, most previous studies are concentrated on international companies such as Microsoft or Google, while the practical values of open source projects of Chinese technology companies remain unclear. To address this issue, we conduct a mixed-method study to investigate the landscape of projects open sourced by three large Chinese technology companies, namely Baidu, Alibaba, and Tencent (BAT). We study the categories and characteristics of open source projects, the developer's perceptions towards open sourcing effort for these companies, and the internationalization effort of their open source projects. We collected 1,000 open source projects that were open sourced by BAT in GitHub and performed an online survey that received 101 responses from developers of these projects. Some key findings include: 1) BAT prefer to open source frontend development projects, 2) 88\% of the respondents are positive towards open sourcing software projects in their respective companies, 3) 64\% of the respondents reveal that the most common motivations for BAT to open source their projects are the desire to gain fame, expand their influence and gain recruitment advantage, 4) respondents believe that the most common internationalization effort is "providing an English version of readme files", 5) projects with more internationalization effort (i.e., include an English readme file) are more popular. Our findings provide directions for software engineering researchers and provide practical suggestions to software developers and Chinese technology companies

    Supervised and Semi-supervised Methods based Organization Name Disambiguity

    Get PDF

    Learning Second Order Local Anomaly for General Face Forgery Detection

    Full text link
    In this work, we propose a novel method to improve the generalization ability of CNN-based face forgery detectors. Our method considers the feature anomalies of forged faces caused by the prevalent blending operations in face forgery algorithms. Specifically, we propose a weakly supervised Second Order Local Anomaly (SOLA) learning module to mine anomalies in local regions using deep feature maps. SOLA first decomposes the neighborhood of local features by different directions and distances and then calculates the first and second order local anomaly maps which provide more general forgery traces for the classifier. We also propose a Local Enhancement Module (LEM) to improve the discrimination between local features of real and forged regions, so as to ensure accuracy in calculating anomalies. Besides, an improved Adaptive Spatial Rich Model (ASRM) is introduced to help mine subtle noise features via learnable high pass filters. With neither pixel level annotations nor external synthetic data, our method using a simple ResNet18 backbone achieves competitive performances compared with state-of-the-art works when evaluated on unseen forgeries
    • …
    corecore